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Quantitative 
plankton imaging

ZooScan = 1 Bpx/y, 1.5M objects/y

UVP = 8.6Bpx/y, ~10M objects/y

ISIIS=25Tpx/y, 100M objects/y



Steep growth in data acquisition

Training data set: in
the context of plankton
images, a set of images
classi!ed into
categories by experts,
from which the
algorithm will learn

Test data set: in the
context of plankton
images, an
independent set of
expert-classi!ed
images on which the
predictive
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Figure 3
Accumulation of images and samples contained in a single repository (EcoTaxa; Picheral et al. 2017). Image data sets collected with
different instruments (the UVP, IFCB, FlowCam, ZooScan, ISIIS, etc.) have been uploaded by an international community of users
from more than 350 organizations. Abbreviations: IFCB, Imaging FlowCytobot; ISIIS, In Situ Ichthyoplankton Imaging System; UVP,
Underwater Vision Pro!ler.

of image-derived traits to enable new functional ecology approaches, and (c) propose next steps
for the future of plankton classi!ers, the coordinated acquisition of massive imaging data sets, and
the development of tools for quantitative imaging.

2. THE CLASSIFICATION OF PELAGIC IMAGES
2.1. A History of Machine Learning Approaches
Machine learning covers all techniques that learn patterns from a training data set and can then
!nd the same patterns in another, independent, test data set. To classify images taxonomically
and access the underlying ecological information (e.g., concentrations/biomass per taxon), most
studies have used supervised classi!ers, which learn to classify (i.e., give a name to) new images
based on a set of images already classi!ed by human experts.

We now tend to separate classic machine learning from deep learning (LeCun et al. 2015). In
the classic approaches, the images are !rst processed by deterministic algorithms that extract in-
formation from them—the size of the organism, its average color or gray level, the complexity of
its shape, its symmetry, and so on. Those features are said to be handcrafted because they indeed
need to be crafted by a practitioner, who must assess or guess what is relevant to tell the various
taxa apart. Then, the classi!cation algorithm, such as a support vector machine (Cortes & Vapnik
1995) or a random forest (RF) (Breiman 2001), learns which combinations of feature values are
associated with which taxonomic label.Deep learning for image classi!cation is based on convolu-
tional neural networks (CNNs) (Krizhevsky et al. 2012, Russakovsky et al. 2015). The !rst part of
the network extracts features from the input image by computing convolutions (i.e.,multiplication
by a !lter) over it; convolutions increase contrast, highlight edges, and so on. After several steps of
convolution and reduction, the image is transformed into a vector of numbers: its deep features.
These features are then used by a classi!er, just like with classic learning; the classi!er here is an
arti!cial neural network. The main difference from classic machine learning is that the feature
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How can we 
process this 
amount of 

data?



Sorted images
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(size, etc.)

Image
features
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Figure 2
The plankton quantitative imaging process; the circled numbers identify four strategies for processing the raw images. High
throughput (red numbers) from laboratory- or !eld-based image acquisition to ecological exploitation is allowed by tight interactions
between instruments, computers, and human operators.

objects accurately and rapidly enough. Enter machine learning. The techniques are detailed in
the next section, but, brie"y, several strategies have emerged (as shown in Figure 2): ( 1©) use of
the features (size in particular) of all objects, with no classi!cation at all (Lampitt et al. 1993);
( 2©) manual identi!cation of images by experts (Dennett et al. 2002); ( 3©) machine classi!cation
followed by visual inspection and validation/correction of some taxa (Garcia-Comas et al. 2011)
or all images (Biard et al. 2016); and ( 4©) machine classi!cation only (Irigoien et al. 2009). In most
cases, marine snow is treated as a single heterogeneous entity, despite its overwhelming numerical
dominance, because de!ning objective categories is dif!cult (but see Schroeder et al. 2020).

The progress of automated techniques and the development of software to facilitate their use
by non–computer scientists enabled the use of imaging data sets for research and ecosystem mon-
itoring purposes. In this article, we take a step back and review the body of work at the intersection
of machine learning and quantitative pelagic imaging. In particular, we (a) survey the literature on
machine classi!cation of plankton and marine snow images and compare a classic and a modern
approach in a realistic case study, (b) examine a few studies to explain howmachine learning applied
to images has improved our understanding of pelagic ecosystems and highlight the promising use
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The quantitative imaging process
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EcoTaxa today

213M objects, 88M 
human-validated (41%)


>100k locations in the 
world’s oceans


1600 users, 500 
organisations, from 
various countries


50 concurrent users at all 
times
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Combine Convolutional Neural Networks with a fast Random Forest classifier

Improved Machine Learning backbone
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EcoTaxa

Application Programming 
Interface (API)

Programmatically


search projects, samples, users, taxa


import data


query subsets of data


classify images automatically


export datasets, in particular to 
external databases

https://ecotaxa.obs-vlfr.fr/api/docs
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Export open data as

DarwinCore Archive

Add license to the data sets, favouring 
open licenses


DarwinCore Archive is


The standard format for biodiversity 
information


Organised hierarchically, like 
EcoTaxa


Very descriptive but complex to 
produce


EcoTaxa helps users create DwCA, 
hence making their data more FAIR
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Video conferencing does not solve a 
12h time difference



Use 1: Environmental 
monitoring

High resolution time series at coastal 
sites, to detect invasive or harmful 
species
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High resolution time series at coastal 
sites, to detect invasive or harmful 
species

Environmental assessment prior to 
exploitation at deep sea mining sites
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Use 2: Biology studies 
at submesocale

Imager deployed on automated 
underwater glider

Capture one image every 2 seconds 
for ~4 months along a transect

Describe the biology on a front at the 
same resolution as the physics and 
chemistry

Investigate prey-predator interactions 
at cm scale, in situ



Use 3: Carbon 
export

Worldwide database of 
~40M marine snow images


Characterise their shape to 
better describe their 
production and sinking
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Figure 7
Morphological trait-space representation of (a) Arctic copepods and (b) marine snow. Morphological descriptors computed from UVP
images were summarized using principal component analysis, as represented here. The arrows are the original descriptors (whose
general meaning is given in the !gure), the axes are the principal components, and example images are displayed at their projected
locations in the trait space. For both copepods and particles, the !rst principal component is related to size (small on the left, large
on the right) and the second to opacity (dark, and hence opaque, at the top; light, and hence transparent, at the bottom).
Abbreviation: UVP, Underwater Vision Pro!ler. Panel a adapted from Vilgrain et al. (2021) under a CC BY-NC 4.0 license
(https://creativecommons.org/licenses/by-nc/4.0); panel b adapted from Trudnowska et al. (2021) under a CC BY 4.0 license
(https://creativecommons.org/licenses/by/4.0).

body, such as lipid sacs in copepods (Figure 1b) or gonads visible through the transparent body
of jellies. Object detectors combined with tracking would allow investigation of the swimming
behavior from in situ videos. Deep regression could estimate a quantity (such as the amount of
lipid reserves or number of eggs; Figure 1b) directly from an image. Color space manipulation
could ease the quanti!cation of the intensity of a given color, to automatically resolve !ne-scale
changes such as the diel variation in color and transparency of Sapphirina nigromaculata docu-
mented by Takahashi et al. (2015), which was interpreted as a strategy to !nd a mate. Finally, in
situ live staining combined with object detectors could provide information on trophic functions
(Brownlee et al. 2016) or physiological states or traits. All of these approaches would allow the
extraction of even more ecologically relevant information from the abundance of pelagic images
collected.

4. TOWARD A GLOBAL NETWORK OF IMAGES
4.1. Improved Plankton Image Classi!cation
Several of the studies described above, including recent ones (Greer et al. 2015), used manual
classi!cation only, even though supervised classi!ers were theoretically available to perform at
least part of the work. A likely explanation is that image processing and the coding of pipelines for
data management are not what plankton ecologists are trained to do. This highlights the need for
tools that give ecologists and taxonomists easy access to machine classi!ers, even if those are a few
points of accuracy below the state of the art, as long as the user interface abstracts the technicalities
and can handle thousands of images quickly.
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Take home messages

Data management, curation and sharing is just as 
important as data collection


It is complex. Doing it well requires time and 
effort


Public e-Infrastructures are needed to serve the 
needs of environmental scientists


Machine learning is a great tool to accelerate (not 
replace) the work of human experts


https://site.wwwpic.net/ 

Merci

https://site.wwwpic.net/

